skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Pei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerical models have been extensively used to understand and predict flow and reactive transport processes in the hyporheic zone. However, most models focus on fully saturated riverbeds without accounting for surface water stage fluctuations related to precipitation and flooding. To capture the complete picture of hyporheic processes in riverbeds and riverbanks, we developed a fully-coupled multiphase reactive transport solver using the Open Source Field Operation And Manipulation (OpenFOAM) platform. This solver captures surface water stage fluctuations and partially-saturated flow in fluvial sediment using VoF two-phase flow and extendedDarcy’s Law two-phase flow models for surface and subsurface domains, respectively. The transport models designed for partially saturated conditions in both domains are implemented. A geochemical reaction module, PhreeqcRM, is integrated into the solver to facilitate complex geochemical reaction networks. A two-way conservative flux boundary condition is implemented at the surface-subsurface interface to realistically map fluxes. The solver’s capability is illustrated through a variety of hyporheic-related problems across spatial scales. These include laboratory experiments and reactive transport in two and three dimensions, from the bedform scale to multiscale riverbeds and riverbanks with fluctuating surface water flow. This novel solver allows for quantifying dynamics in the hyporheic zone with fewer simplifications. Based on the code structure and parallel design of OpenFOAM, the solver can simulate large, three-dimensional (3D) multiscale cases. The code, examples, and pre- and post-processing scripts are all open source, providing community access to use and modify them as desired. 
    more » « less
    Free, publicly-accessible full text available July 2, 2026
  2. NA (Ed.)
    ABSTRACT Recently, there has been a surge of international interest in extraterrestrial exploration targeting the Moon, Mars, the moons of Mars, and various asteroids. This contribution discusses how current state‐of‐the‐art Earth‐based testing for designing rovers and landers for these missions currently leads to overly optimistic conclusions about the behavior of these devices upon deployment on the targeted celestial bodies. The key misconception is that gravitational offset is necessary during theterramechanicstesting of rover and lander prototypes on Earth. The body of evidence supporting our argument is tied to a small number of studies conducted during parabolic flights and insights derived from newly revised scaling laws. We argue that what has prevented the community from fully diagnosing the problem at hand is the absence of effective physics‐based models capable of simulating terramechanics under low‐gravity conditions. We developed such a physics‐based simulator and utilized it to gauge the mobility of early prototypes of the Volatiles Investigating Polar Exploration Rover. This contribution discusses the results generated by this simulator, how they correlate with physical test results from the NASA‐Glenn SLOPE lab, and the fallacy of the gravitational offset in rover and lander testing. The simulator, which is open‐source and publicly available, also supports studies for in situ resource utilization activities, for example, digging, bulldozing, and berming, in low‐gravity environments. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  3. Per- and polyfluoroalkyl substances (PFAS) are surface-active contaminants, which are detected in groundwater globally, presenting serious health concerns. The vadose zone and surface water are recognized as primary sources of PFAS contamination. Previous studies have explored PFAS transport and retention mechanisms in the vadose zone, revealing that adsorption at interfaces and soil/sediment heterogeneity significantly influences PFAS retention. However, our understanding of how surface water−groundwater interactions along river corridors impact PFAS transport remains limited. To analyze PFAS transport during surface water−groundwater interactions, we performed saturated−unsaturated flow and reactive transport simulations in heterogeneous riparian sediments. Incorporating uncertainty quantification and sensitivity analysis, we identified key physical and geochemical sediment properties influencing PFAS transport. Our models considered aqueous-phase transport and adsorption both at the air−water interface (AWI) and the solid-phase surface. We tested different cases of heterogeneous sediments with varying volume proportions of higher permeability sediments, conducting 2000 simulations for each case, followed by global sensitivity and response surface analyses. Results indicate that sediment porosities, which are correlated to permeabilities, are crucial for PFAS transport in riparian sediments during river stage fluctuations. High-permeable sediment (e.g., sandy gravel, sand) is the preferential path for the PFAS transport, and low-permeable sediment (e.g., silt, clay) is where PFAS is retained. Additionally, the results show that adsorption at interfaces (AWI and solid phase) has a small impact on PFAS retention in riparian environments. This study offers insights into factors influencing PFAS transport in riparian sediments, potentially aiding the development of strategies to reduce the risk of PFAS contamination in groundwater from surface water. 
    more » « less
  4. Groundwater-surface water interaction (hyporheic exchange) is critical in numerous hydrogeochemical processes; however, hyporheic exchange is difficult to characterize due to the various spatial (e.g., sedimentary architecture) and temporal (e.g., stage fluctuations) variables that influence it. This interdisciplinary study brings forth novel insights by integrating various methodologies including geophysical surveys, physical and chemical sediment characterization, and water chemistry analysis to explore the interplay of the numerous facets governing hyporheic zone processes within a compound bar deposit. The findings reveal distinct sedimentary facies and geochemical zones within the compound bar, driven by the sedimentary architecture. Cross-bar channel fills are identified as critical structures influencing hydrogeochemical dynamics, acting as baffles to groundwater flow and modulating nutrient transformations. Geophysical imaging and hydrogeochemical analyses highlight the complex interplay between sediment characteristics and subsurface hydraulic connectivity, emphasizing the role of sediment heterogeneity in controlling hyporheic exchange and solute mixing. The study concludes that sediment heterogeneity, particularly the presence of cross-bar channel fills, plays a pivotal role in the hydrogeochemical dynamics of the hyporheic zone. These structures significantly influence hyporheic flow paths, solute residence times, and nutrient cycling, underscoring the necessity to consider the fine-scale sedimentary architecture in models of hyporheic exchange. The findings contribute to a deeper understanding of riverine ecosystem processes, offering insights that can inform management strategies for water quality and ecological integrity. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to ozone depletion. Recent studies have identified river corridors as significant sources of N2O emissions. Surface water-groundwater (hyporheic) interactions along river corridors induce flow and reactive nitrogen transport through riparian sediments, thereby generating N2O. Despite the prevalence of these processes, the controlling influence of physical and geochemical parameters on N2O emissions from coupled aerobic and anaerobic reactive transport processes in heterogeneous riparian sediments is not yet fully understood. This study presents an integrated framework that combines a flow and multi-component reactive transport model (RTM) with an uncertainty quantification and sensitivity analysis tool to determine which physical and geochemical parameters have the greatest impact on N2O emissions from riparian sediments. The framework involves the development of thousands of RTMs, followed by global sensitivity and responsive surface analyses. Results indicate that characterizing the denitrification reaction rate constant and permeability of intermediate-permeability sediments (e.g., sandy gravel) are crucial in describing coupled nitrification-denitrification reactions and the magnitude of N2O emissions. This study provides valuable insights into the factors that influence N2O emissions from riparian sediments and can help in developing strategies to control N2O emissions from river corridors 
    more » « less
  6. Serverless computing is an increasingly attractive paradigm in the cloud due to its ease of use and fine-grained pay-for-what-you-use billing. However, serverless computing poses new challenges to system design due to its short-lived function execution model. Our detailed analysis reveals that memory management is responsible for a major amount of function execution cycles. This is because functions pay the full critical-path costs of memory management in both userspace and the operating system without the opportunity to amortize these costs over their short lifetimes. To address this problem, we propose Memento, a new hardware-centric memory management design based upon our insights that memory allocations in serverless functions are typically small, and either quickly freed after allocation or freed when the function exits. Memento alleviates the overheads of serverless memory management by introducing two key mechanisms: (i) a hardware object allocator that performs in-cache memory allocation and free operations based on arenas, and (ii) a hardware page allocator that manages a small pool of physical pages used to replenish arenas of the object allocator. Together these mechanisms alleviate memory management overheads and bypass costly userspace and kernel operations. Memento naturally integrates with existing software stacks through a set of ISA extensions that enable seamless integration with multiple languages runtimes. Finally, Memento leverages the newly exposed memory allocation semantics in hardware to introduce a main memory bypass mechanism and avoid unnecessary DRAM accesses for newly allocated objects. We evaluate Memento with full-system simulations across a diverse set of containerized serverless workloads and language runtimes. The results show that Memento achieves function execution speedups ranging between 8–28% and 16% on average. Furthermore, Memento hardware allocators and main memory bypass mechanisms drastically reduce main memory traffic by 30% on average. The combined effects of Memento reduce the pricing cost of function execution by 29%. Finally, we demonstrate the applicability of Memento beyond functions, to major serverless platform operations and long-running data processing applications. 
    more » « less
  7. Berciano, Virginia (Ed.)
    Abstract Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering. 
    more » « less
  8. Abstract The soil contact model (SCM) is widely used in practice for off‐road wheeled vehicle mobility studies when simulation speed is important and highly accurate results are not a main concern. In practice, the SCM parameters are obtained via a bevameter test, which requires a complex apparatus and experimental procedure. Here, we advance the idea of running a virtual bevameter test using a high‐fidelity terramechanics simulation. The latter employs the “continuous representation model” (CRM), which regards the deformable terrain as an elasto‐plastic continuum that is spatially discretized using the smoothed particle hydrodynamics method. The approach embraced is as follows: a virtual bevameter test is run in simulation using CRM terrain to generate “ground truth” data; in a Bayesian framework, this data is subsequently used to calibrate the SCM terrain. We show that (i) the resulting SCM terrain, while leading to fast terramechanics simulations, serves as a good proxy for the more complex CRM terrain; and (ii) the SCM‐over‐CRM simulation speedup is roughly one order of magnitude. These conclusions are reached in conjunction with two tests: a single wheel test, and a full rover simulation. The SCM and CRM simulations are run in the open‐source software Chrono. The calibration is performed using PyMC, which is a Python package that interactively communicates with Chrono to calibrate SCM. The models and scripts used in this contribution are available as open source for unfettered use and distribution in a public repository. 
    more » « less